
47. The iterative solution: implementation

FORMULATING THE MATHEMATICAL description of the
astrometric solution was one part of the challenge

for the Gaia astrometric data processing. But its actual
computer implementation was quite another.

As I have described here separately, the problem is
formidable: both in terms of the amount of data to be
treated (the total number of unknowns is around one
billion, and the solution treats some 100 billion observa-
tions extracted from some 100 000 Gbytes of raw satellite
data), and in terms of the way in which the iterative solu-
tion has to be executed, with its four ‘blocks’ (of source,
attitude, calibration, and global parameters) being eval-
uated in a cyclic sequence until convergence.

The implementation and the data management re-
quired to make the Astrometric Global Iterative Solution
(AGIS) function has been absolutely crucial to the ulti-
mate goal, and success, of Gaia.

A KEY FIGURE in this task was William O’Mullane.
While Gaia was still in its study phase, in the 1990s,

O’Mullane conceived and set up the framework for run-
ning the set of iterative equations in a distributed man-
ner. The prototype was based on the Hipparcos satellite
data, which employed a similar sky-scanning.

This approach was novel in using the relatively new
Java language, and in exploiting the message passing
and networking capabilities to manage multiple dis-
tributed computing nodes.

Initially using an object oriented database, this was
later largely replaced by more traditional solutions, al-
though AGIS ultimately used the high-performance ma-
trix database InterSystems Caché (which itself now uses
the Gaia data as a key example on its home page!).

In 2005, O’Mullane returned to ESA with the task of
developing an implementation of the global astrometric
solution at scale. This led to the building up of a team
of a dozen computer scientists at ESA’s European Space
Astronomy Centre (ESAC), outside Madrid.

Using ‘agile’ programming (and, in particular, ‘ex-
treme programming’, XP), the group developed a system
capable of producing the core astrometric solution un-
derpinning the successive catalogue releases.

CENTRAL TO THE technical implementation was the
concept of a ‘data train’, which performs a ‘sweep’

through the observational data, drawing the various al-
gorithms behind it. The train ‘picks up’ an object, and
passes it to all algorithms in a data-driven manner. Algo-
rithms are called – and objects are then passed to them
– allowing the system to access data efficiently, while in-
sulating the algorithmic code from storage aspects.

As an example, while early implementations of AGIS
required four passes through the billions of observations
to execute the four processing blocks, a later implemen-
tation executed a single ‘outer iteration’ with just a single
pass through the entire data set.

A critical constraint was to minimise disk access
at all stages, also within each iteration. For exam-
ple, holding the satellite attitude vectors for the entire
mission in memory on each processing node was cru-
cial, since practically every calculation used the attitude
data. Likewise, calibration results from each previous it-
eration could also be stored in memory on each node.

G
ai

a
p

ro
ce

ss
or

,E
SA

C
(J

oe
é

H
er

n
an

de
z)

LET ME FIRST LOOK at a major demonstration solution
run at ESAC on simulated data, and before the satel-

lite launch, as described by Lindegren et al. (2012).
This used an IBM cluster with 14 nodes, each node

having two processors with four cores each, correspond-
ing to 112 CPUs in total. This configuration of 14 nodes
was estimated to have a total performance of 0.65 tera-
flop/sec (0.65£ 1012 floating point operations per sec-
ond). One iteration took about 1 hr (with typically 90%
CPU occupancy). The total run time for the 135 itera-
tions executed was nearly 6 days, corresponding to a to-
tal of about 3£1017 floating point operations.

Gaia DR0 1 22 November 2021

https://ui.adsabs.harvard.edu/abs/2012A&A...538A..78L


Michael Perryman Gaia Science 47. The iterative solution: implementation

Scaled up to the projected 108 primary sources of a
real AGIS run, this would amount to 1.5£1019 flop. Us-
ing a more conservative estimate of 5£1019 flop to ac-
count for additional features not included in that partic-
ular demonstration run, they predicted a requirement of
some 60 days on a dedicated 10 teraflop/sec machine.

Iteration number

Convergence of the
PPN parameter, γ – 1,
with iteration number

0

0

20

–10–3

–10–4

10–4

10–3

10–2

10–1

–10–2
40 60 80 100 120 140

γ
–
1

Li
n

de
gr

en
et

al
.(

20
12

)

The figure above, from the same simulation exercise,
shows how one of the ‘global’ terms, specifically the esti-
mate of the parameter ∞ (in the PPN formulation of gen-
eral relativity), eventually converges, from some initial
‘assumed’ value of 1.1, to a stable value close to 1.0, from
around iteration 80 onwards.

THE FOLLOWING IS another example illustrating the
convergence of AGIS, taken from the processing in-

volved in the preparation of Gaia Data Release 1 (DR1,
Lindegren et al. 2016). It shows how the parallax update
(in microarcseconds) evolved with the iteration number.
Different regimes of the underlying calibration model
were adopted as the iterations proceeded.

Starting with parallax updates of around 10 milliarc-
sec for the initial iterations, they converged to values of
around 1 microarcsec or less by around iteration 200.

100 200 300 400 5000
Iteration number

Pa
ra
lla
x
up

da
te

pe
ri
te
ra
tio

n
(m

ic
ro
ar
cs
ec
) 106

104

102

10-2

100

simpli!ed
model

full
calibration
model

30 sec
attitude knot

interval

Hipparcos
alignment
active

attitude
aligned
to ICRS

auxiliary
quasar
solution

Li
n

de
gr

en
et

al
.(

20
16

)

THE ASTROMETRIC SOLUTION for Gaia Early Data Re-
lease 3 (EDR3) is described in detail by Lindegren

et al. (2021). But I will focus here on some of the num-
bers related to the hardware, and to the execution times.

The astrometric solution for Gaia EDR3 was run
using 32 nodes, each comprising 64 GB of RAM and
24 cores (which are Intel–Xeon CPU E5–2670 v3 running
at 2.30 GHz). Together these provided a total theoretical
performance of 30 teraflop/sec.

In terms of disk storage, 55 Tbytes was available for
the solution for primary stars (around 40 Tbytes was
used), and a further 20 Tbytes for the secondary stars.

In practice, data from the satellite is sorted before
being ingested by AGIS. This AGIS-preprocessor reads
and writes the data three times in order to have the main
astrometric data sorted for every source. Then the data
is grouped, typically in chunks of 1000 sources in the pri-
mary store and 10 000 sources (depending on the star
density) in the secondary store. The AGIS-preprocessor
takes about one week to run.

A total of 181 iterations were executed in generat-
ing EDR3 (as detailed in their Table 3). Each outer it-
eration of the 14 million primary sources (performing
the source, attitude, calibration and global blocks) took
90 minutes. Although this has been further optimised
(taking around 60 minutes) for the next major reduction,
DR3, more primary stars will be used.

What has taken much time and resources is refining
the calibration model to further improve the solution,
correcting the biases observed in the preliminary runs.
In practice, some 200 preliminary tests were scheduled
before starting the final operational run.

THE PRIMARY STAR SOLUTION for EDR3 had to process
about 6.5 billion CCD observations for the 14.3 mil-

lion primary sources. The solution determined 71.5 mil-
lion source parameters, together with 10.7 million atti-
tude, 1.1 million calibration, and 2.0 million global pa-
rameters. The ‘redundancy factor’, being the mean num-
ber of observations per unknown, was about 76.

The secondary star solution processed nearly 78 bil-
lion field-of-view transits, generating converged solu-
tions for 2.495 billion sources (of which 585 million were
5-parameter, 883 million 6-parameter, and 1.027 bil-
lion were 2-parameter solutions). Subsequently some of
the 5- and 6-parameter solutions, and most of the two-
parameter solutions, were removed because they failed
to meet the rigorous acceptance criteria.

LOOKING BACK, this crucial step in the success of Gaia
could easily have gone spectacularly wrong.

In the technology preparation phase in 1999, I iden-
tified this data organisation/analysis problem as one of
the highest priority items for immediate further study,
entering the Science Technology Document (Peacock &
Scoon 1999) as Item G24. But a review panel rejected the
funding request, with the one-line comment: ‘Not a pri-
ority, just wait for commercial products to come’.

It was a long process for me to reverse this unin-
formed dismissal of a most complex issue. After that,
a 2-year industrial study, and a parallel academic study
extending over several years, failed to progress this chal-
lenging implementation. Only bringing O’Mullane to
ESA to work on the problem under my direct authority
eventually led its successful implementation.

22 November 2021 2 Gaia DR0

https://ui.adsabs.harvard.edu/abs/2016A&A...595A...4L
https://ui.adsabs.harvard.edu/abs/2016A&A...595A...4L
https://ui.adsabs.harvard.edu/abs/2021A&A...649A...2L
https://ui.adsabs.harvard.edu/abs/2021A&A...649A...2L

	47.Theiterativesolution:implementation

